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This is the f i nal technical report covering the research carried out

und er this contract from March 1, 1975 , th rough February 28 , 1977. The

work may be divided into these four categories :

I. Nonlinear and linear stability of multistep formulas ,

II. Special high—order A—stable methods , 0

III. Fractional linear difference schemes for systems of quadratic

differential equations , and

IV. Rotational solutions of the Josephson phase (Sine—Gordon—)

equation .

He re we summarize our results obtained in these areas. A ful l

account is given in the research pape rs listed In Section V and referred

to hereafter by letters in brackets. Some of these papers are enclosed

with this report and others are in preparation . Numbers in brackets refer

to the list of references (Section VI).

_ - . . . - -.—- --—.-- ,-- -- .--- —
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‘1

I. NONLINEAR AND LINEAR STABILITY OF MULTIS~ EP FORMULAS

A. Nonlinear Inpu t—output Stability of Conventional Multistep Formulas

[a]

If a linear multistep formula (LMF) is applied to a nonlI~ ear system

of differential equations , ~‘ = f(y), ~ !ICl’ the nurerical so1utic~n {x} ,

n = 0 ,1, . . , is def ined b y a nonlinear d i ffer ollel’ e C i l it  IOfl ,

N ( x ) = 0; - (1)

here x approx imates y = y(t ), where v(C ) is an exact solution of the

dif f e r e n tial system , t = oh , Ii > 0, n 0,1 ,... , and

k k
N(x  ) = ~ cz .x — h 1 o .f ( x  ,)  . (2)

n ‘=0 J fl+] 
=~ 

3 n+j

If by dn = _N(yn) we denote the local truncation error , then the global

error , e = x —y , satisfies M(e ) = d , where M(e ) = N( y +e )—N (y ) .  Then n n i’s n n n n n

difference equation (1) is said to be Input—output stable if

I I ( e } I I  < K II {d } I I  in some appropr ia te norm I~H~ where K isa constant

independent of n.  In order for the concept of input—output stability to

be re levant  fo r s t i f f  systems of differential equations , the step—size Ii

must be thought of as fixed and finite.

We have proved several theorems giving sufficient conditions for

input—output stability of difference equations for various types of non-

l inearl ties , no tably  f or f ’ s satisfying the monotonicity (dissipativlty)

cond it ion -

< f(y+e) - f(y), e -
‘ - ~~~ (3)

for a l l  y and e In some appropriate st’t and for name ~i - 0; here < , “ I s  afl

_ _ _
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3

arbitrary scalar product and el
2 

< e,e > . The condition (3) implies

stability (dissipation) of the differential system . We have, for example ,

proved the following result:

k
Theorem 1: Consider the well—known polynomials ~

(C) = Z

k 
j =O J

= Z ~~~ associated with the LMF and let F denote Its “root—locus
j =o ‘

curve”, i.e., I’ = (q~ q = q(~ ), q(~) = p (~ ) / o (~ ) ,  ki = l}. Then , if the

roo ts o~ of o(ç) satisfy Io~ ~ 1, j  = l ,...,k, and if hp < m , where m is

the deepest incursion of F into the left half of the q—plane

(m = mm Req(C)), then we have input—output stability both in the and
kl = 1

in the maximum norm.

The second condition of Theorem 1 may be interpreted by say ing tha t

the dif f e r e n tial sys tem has an amoun t of d issipa t ion , measured by hij,

sufficient to offset the lack of A—stability [1] of the LMF , measured by m.

Other input—output stability theorems have been obtained for:

• nonlinearities f which are monotone only for l e l > B > 0 ,

B su f f i c ien tly large ,

• monotone f’s with suff iciently large negative ~i ,

• nonlinearities f which are gradients of concave , scalar functions

(imply ing that the Jacobian matrix af/ay is symmetric and its

spectrum Is real),

• nonitnear ities I satisfying a Lipschitz condition , and

• nonlinear systems composed of loosely coupled subsystems , each

of which falls into one of the previously mentioned categories.
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B. Nonlinear Stabil ity of Formulas with Set -and Derivatives [b]

The non l inea r  i n p u t — o u t p u t  st ab i l  i t v  a na l  vs i s  f o r  convent ional  LMF

described in tile preceding para~’uap h has been extended to the LMF involving

second derivat ives:

k k k

~ ct .x -is N 0.* + h
2 

~ = 0. (4)
j=0 ~ ~~~ j=0 ~ j = {) ~ 

-

The results app ly to stable non l inear svste:ns * = f ( x )  s a t i sfy i n g  the

monotonicity conditions

h < f (x+e) - f(x), a > � -
~~~~ 

I t - f l ,  (o~ 0)

h
2 

~ g(x+e) 
— g(x), e > � o ,I e j 2 , (t I ,, ‘ 1))

< f (x+e) — 1 (x) , g(x+e) — g(x’
~ > ~ 0,

where g = f f and f is the Jacobian matrix l f / i x.x x

Firs t , simp le s u f f i c i e n t  c o n d i t i o n s  were de r ived  f o r  input—output

stability of the nonlinear difference operator associated with the dli-

ferential system and the integration formula. Rewrite (.‘+) in the form

k k k
~~a x  — h ~~~ b .* + h

2 N c ~~1 0 (5)
j n—f 

~~~~ 
j  n—f 

~
=0 ~ n--I

where a
1 

= “k—f ’ 
b
1 

= 

~k—j ’ c1 
= 

~k—j ’ 
i = 0,1 ,... ,k , n = k , k+l ,..., and

k k k
let r(z) ~ a .z1 , s(z) = N b z-1 , and t(z) = N C L

1 correspond to ‘ (n) ,
j=t) ‘~ 1=0 -~ 

~=0
k 

-

o~~~) ,  and T ( ~~) E ‘
~
‘ ~~~~~~ respectively. Then t he  above m e n t i o n e d  s t a b i l i t y

1=0~
1

cinditlon is that

--——— - - .~~
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A+B~ 1+p2 
~~~rnax 

~~~~~~ 
- A~~ + 

E
max f~~~ 

- B~~ < 1 , (6)

whe re A and B are free posit ive parameters which are at one ’ s disposal

and which are to be suitably chosen.

Second , the c r i te r ion (6) was applied to the A—stable formulas of

En r ight [2 ]  with k=l , p=3 and with k= 2 , p= 4 , respectively. A computer

sear ch p rocedure was used to f ind  values of A , B fo r which (6) is sa t i s f ied

for various amounts of dissipation , i.e., va rious values of and p 2 . Fo r

example , En r ight ’s fo rmula wi th  k 1, p 3 ,
2

x - x — (2* + * ) + i~ = 0, (7)
n n-l 3 n n—i 6 n

was found to be input—output stable with a moderate amount of dissipation :

= = 1.3.

C. Lfapunov—Stability of Conventional Multistep Formulas [c]

If Ix } and Ix +z 11 are any two solutions of the difference equationn n n

(1), then {z~ } satisfies the variational difference equation

N(x ) — N(Xn+Zn
) = 0. The LMF giving rise to this variational equation is

said to be Liapunov—stable if , in some appropriate norm defined by a

Liapunov function , I I (Z I I) < ~~~. It is said to be (G,~i)—stable in the sense

of Dahiquist if for any f satisfying the monotonicity condition (3) it is

Liapunov—stable with respect to a norm defined by a positive definite quad-

ratic vector form E g
11 

< Zn+k i~ 
2n+k~j 

> , where G= (g~1
) is a positive

_ _ _ _ _ _ _ _ _  —~~~~~~~-- _ _  _
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definite real symmetric kxk—matrlx . The LMF is sai d to be C—stable if it is

(G ,0)—s table. A—stability is necessary for its sion—linear analogue ,

C—stability.

By a simp le , exp licit construction of a quadratic Liapunov function

we proved the following results:

Theorem 2: Any member of the  f o u r — p a r a m e t e r  f a m i l y  of a l l  three—step

(k = 3) LMF which are second—order accurate (p = 2) is C—stable it and onl y

if it is A—stable.

Any t h r e e — s t e p  (k = 3), th ird—order (p = 3) LMF whose pol ynomia l

0 ( C )  s a t i s f i e s  assumpt ion  1 of Theorem I , as well  as c e r t a i n

other , easily verifiable algebraic constraints between its co-

efficients , is (G,p)—stable for any p below an explicitl y given ,

negative bound which depends on the  cho ice  of the formula. For

example , the  fo rmula

—lO x + 42x —78x +46x —h (f —f —f +25f ) = 0,n n+l n+2 n+3 n n+l n+2 n+3

a “nei ghbor ” of the three—step backward differentiation formula ,

is (G ,p )— stab l e  for p 5— 36/ 3 1.

A survey of work on the stability (mostly l inear) and acc ur acy of

numerical methods for stiff differential equation [dl was presented by

the principal investigator at the workshop on stiff differential equations

held at the Air Force Weapons Laboratory at Kirtland Air Force Base , N.M. ,

on May 6 and 7, 1976.

A survey of recent work on nonlinear stability of integration methods

is in preparation [e].

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

~~~---~~~~~~~ -~~~~ 
, --- - --



7

II. SPECIAL HIGH—ORDER A—STABLE METHODS

A. Averag ing [f]

Hig h—order , A—stable numerical solutions to stiff systems of differ-

ential equations may be generated by a) calculating several A—stable solu-

tions of order of accuracy one or two , each of which is produced by a parti-

cular member of a fami ly of LMF depend ing on instrinsic parameters , and b)

forming a suitable “weigh ted average” (linear combination) of these solu-

tions. The recipe for forming high—order averages of low—order LMF solu-

tions is found by considering an asymptotic expansion of the global trun-

cation error as a function of the formula parameters.

An efficient procedure was developed for the systematic compu-

tation , to high orders in h , of an asymp totic expansion of the

global truncation error of an LMF . This technique was applied

for  f ind ing,  to 0(h 6), the error expansion for the four—parameter

class of all three—step , second—order LMF. From a two—parameter

subclass of this class , A—stable (in fact , G—stable) methods

of orders 4 ,5, and 6 have been derived which require the aver-

ging of as few as 2, 3, and 4 LMF solutions , respec tivel y. These

methods hav€ been programmed in APL and successful l y tested on

linear and mildly non—linear stiff systems . The success of the

numer ical tes ts hinged partly on the use of a suitable starting

procedure we developed for the step—b y—s tep solution of the dif-

ference equa tions.

B. A—stable Integration Formulas with Second Derivatives [g]

Whereas for conventional linear multistep formulas (LMF) A—stabi l it y
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is Incompatible with orders of accuracy p ~ 2 ~1 J ,  there do exi t A—stable

LMF involving second derivatives , i .e., formulas of the t ype  ( 4 )  of as

high an order of accuracy as four [2 ,3]. A cr i t e r i o n  was develor d fur

t e s t ing  A — s t a b i l i t y  of f o r m u l a s  of c lass  ( 1 ) ,  w h i c h  a l so  served a~ a b a s i s

fo r  the  a p r i o r i  c o n s t r u c t i o n  of a special  c l a s s  os A — s t u i ’ l e  fo r m u l a s  of

this type. This c r i t e r i o n  s t a t e s  tha t  i f  i) the formula ~~) is A~ _stab1e
*
,

i. e . ,  the roots  t . of the  pol ynomial  ‘( ç )  = ~~~~~ s a t i sf y
1 j=O  ~

I T~ j < 1, i=l , . . . , k ;  and ii)  unde r  the  two—v a lue , 1  sna p ( -
~~ q ,  de f i h , 2 by

character istic equation

P ( C )  - q o ( C )  + q
2
T (~~) = 0, (8)

the image set F of the unit—circle of the c—p lane (sometimes referred to

as the root—locus curve) satisfies F c {qlReq � O } , then  the fo rmula  ( 4 )

is A—stable. This criterion is based on an earlier result of ours [ 4 ]  and

generalizes a criterion valid for conventional LMF [5], I.e., formulas witl

1(C) 0. It can be implemented efficien t ly by using the algorithms of

Routh [6] and those described by Duff in [ 7 ] .

The criterion mentioned above has been used to a priori construct

the three—parameter family of all A—stable two—step (k = 2) formulas of

type (1)
t 
which have p = 4. The formulas of Enrig ht 12 ] and those proposed

by Jackson and Kenue [8] are members of this family .

* The present definition of A —stability is analogous to that for con-
ventional LMF given i n  [4].

Exc ep t poss ibly  for some marg i n a l l y  A—stable ones.

_ _ _ _ _ _  
_ __ _ _  _ _  J
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g~ Op t i m i z a t i o n  of A-stab le LMF with Respect to a Global Accur acy Cri te ri ou

[g]

I t  t he  f o r m u l a  (11 i s  app l ie d  to the  t e s t  e q u a t i o n

k = \x , \ = co u s t .  (tI )

t h e  fundamental so lu t  i o n s  of t h e  r e s u lt i n g  d i f f e r e n c e  e q u a t i o n  are os time

f o rm  {ç fl , 11 = 0,1 ,2 ,... } ~- 1mer e C is any one of the solutions of the  ch a r a c ter-

istic equation (81 with q hA , provided these roots are distinct. If one

~ 1 them sat sti e s C ~~ . e • , if

- Iog~ o ( 1 ) + (logC)
2
T(~~) = 0 , (10)

then , for this C, {r,lm } is an exact discrete solution of (9), l .t.,

n qn At
e = x(t ) , t = nh , where x( t ) = e Is the exact  f u n d a m e n t a l  solu-

tion of the differential equation (9). Then , as far as this “principal ”

root is concerned , the  f o r m ul a  (4) is exponent ially f itted [9, 10] .it

q = log C.

Let R(C) denote the  left side of (10). For any given C, IR (~1 t ,

is a measure of how far the formula is from being exponentiall y fitted .

1 -)

Thus , M = / [R(C)] dC is an ~,~measure of global accuracy of -he formula
0

(4) with respect to the family of test problems * = X x , —
~= 

s 0. The

measure M can be computed exp licitl y as a function of the formula paramt tars.

For the particular three—parameter cl a ss of formu las defined und er

I1.B the f o l low ing problem wa s solved : Optimize the formula with respect

to M over all three parLlmeters , subject to the A—stabilit y constraints. The

unique optim a l f o r m u l a  was found to be

_ _ _ _ _  --- - --—--—~~~~~~~~~~ .. --
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1236x —24 162 0x +240384x — h ( — 6 l 8 *  +119574* + 120 192* )
n+l n+2 n n+l n+2

+h2(lO3X
n
_2Ol35X

n+i
+20032X

n+2) 
= 0.

Ill. FRACTIONAL LINEAR DIFFERENCE SCHEMES FOR SYSTEMS OF QUAL)RATIC
DIFFERENTIAL EQUATIONS [h ,i ,jJ

We are concerned w it h  the numer ica l  s o l u t i o n  of q u a d r a t i c  sy s t e m s

of ord inary  d i f f e r e n t i a l  equat ions

.i i a ~ i a I
x = a x x  + b x  + c

a

by q u a d r a t i c  sy stems of d i f f e r e n c e  schemes

(_r
1
~~u~~(t) + S

l
)U
a
(~ +h) = t l

5u a ( t ) u ~~( t )  + U
l
U
a
(~~) + V .

Here , a and ~ are summed f rom 1 to n , and i ranges  f rom 1 to n .

In vector  n o t a t i o n  time i n i t i a l  value  problems f o r  these  e q u a t i o n s  I r e

* = x”~x + Bx + c , x(O) = ~~, ( 11)

(—R[u (t)] + S)u(t+h) = T [ u ( t ) ] u ( t )  + iu (t) + v ,u (0) = ~~.(l2)

In the above , x, c , ~, u and v are vectors in R’m ; B , S and U are n~ n

matrices ; * is multiplication in the algebraQ (*) = (a
~k

); and R [u] and

T[u] are nxn matrices which are linear functions of u.

Wheh T(u] E 0, the scheme (12) can be written as

u(t+h) = (-R[u(t)] + S) 
1
(Uu(t) + v), (13)

wh ich we call a fractional linear scheme . We have obtained the followin g

results:

I) If time scheme (13) converges as h 0 for all F~, then ft must

converge to a quadratic system (11).

-5- - — S  — - — .  _ _ _ _ — , — — , — — — —- ——  . --5— — - __________
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2) For every quadratic system (11), there exists a fractional linear

scheme (13) which approximates (11) to second order and which converges to

(11) as h -
~
- 0.

3) If the coefficients of the scheme (13) satisfy

h
R(h)[u]p = / V

1
(T)((V(T)u)*(V(T)p))dT , (14)

0 
-

S(h) = v(h) (15)

U(h)  = —R (h)[V(h)z(h)] + I, (ib)

v(h) = V (h)z(h), (17)

wher e z = z ( t )  and V = V(t) are defined b y

= z*z + Bz + c , z(0)  0 ,

V = —V(B+2R [z]), V(0) = I, (R*[ z ]x  z*x ) ,

then (13) is a second order accurate convergent scheme for (11).

4) The scheme (13) is the exact scheme for (11) if and on ly It the

scheme coeffic ients satisfy (l4)— (17) and the system (11) is a F -sy stem .

That is , the solution of (11) is given by

x(t,~~) = ( -R ( t ) [~~J V ( t ) + V ( t ) ) ’( ( - R ( t ) [V ( t ) z ( t ) ] + I ) ~ + V ( t ) z ( t ) ) .

5) If the coefficients of (13) sa t isf y (14)— (17) to second order

in h, then (13) is also a second order accurate convergent scheme for (11) .

6) The matrix Riccati equation

XAX + BX + XC + D,

which is of grea t prac t ical impor tanc e , I s  a P—system and therefore has

a frac tional linear exact scheme . Further , this exact scheme can be con-

structed by solving a linear sy stem of ordinary differentia l equations 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  _ _ _
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on the interval [O,h].

These results give a rather c o mp i s t e  a n a l y t i c  theory of fractional

linear dir terenci . scherses for quadratic systems . To t e st  the comput ational

e f f e c t i v e n e s s  of these  scIi~- m s , two computer codes arc being developed im-

plementing these schemes: one fur two—d imens ional systems , jnJ one for

arbitrary matrix Riccati oq t i a t  i o n s .

IV. ROTATIONAL SOT !‘1g N ~ OF TIlE JOSEPHSON i’IL’SF (SINE—GORDON) EoUA 1 1  ~~ [k ,~ I

A. Problem FormuhaL iui

A Josephson junction consists 01 two superconductors separated hv

an extremely thin dielectric barrier. The order parameter ~ (phase dif—

ference between the wave functions of the two superconductors) satisfies

the Josephson equations [ii]. In a mathematical l inmi t situation where ~

depend s on ly on one space d i m e n s i o n  and on t ime , Josephson ’ s fundamental

equations combined with Maxwell ’s equations give rise to a nonlinear damped

wave equation for ~ referred to as the Joseph son phase equation or time

*“sine—Gord on” equation. In dimensionless form this equation is

4 — 4 —o 
~~

-
~~

- 
~. sin q . (18)

~)x~ ~~~~

For the purpose of describing the Jc m-m ep hson a c — e f f e c t , one is seeking

rotational solutions of (18); i.e., so lmi t ions of t h e  form - ~- t -4- ~~, w h er e

mji is periodic in t of per hod (2u/w) , for some a .

* The dimensionless variabl es are those introduced In  [12], except that
distances arc ni& ’~ssurod In  unit s of t I ~ L/ ’~ w h Ie r t- i s t 1w jmi n ct i n  lengi L
rather t han in unit s t i  t he  .Jo~~c p h m s o m ~ t l m t - t  r am Ion d ej t h m ) 

-- ~~~- .~~~~~~~~~~~~~~~~ - - - , - -—-  ~~~~~~~~~~~~ - - . - S - - -. - - 5 - - --_- --~~~--~~~ -~~~~~ - -- S_ _
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4J

In a situat ion where a constant voltage V
e 

is applied to one end of

the junction (x=O), the equation (18) is to be solved subjec t to the

boundary conditions [12]

‘ti l = w t  , w V
x=0 e

-

~~ X 1 T

where H
e 

deno tes an ex ternally app lied magne tic field. This case is re-

ferred to as the “vol tage— driven case .” Note that s L
2
/(1t A~ )

2 where

is the Josephson penetration depth, and the o of [12] equals (7T A~ /L) times

the present o. The total current I drawn by the junction is the time average

(over a period) of the ac total current 1(t) defined by the additional con-

straint

= 1(t)x= sT ~x x 0

The nonlinear curren t—voltage characteristic of the junction is then given

by I =

If the junction is driven by a constant total imposed current

one is looking for rotational solutions of (18) with unknown w satisf y ing

the boundary condi tions

= -(H + I ),
~x x=O e e

--H3x x—ir e

Then the voltage V across the junction at x 0 is the t ime average of the

ac vol tage V(t) defined by V(t) — (I
~ / a t ) J ~ _0 . This case is referred to as

the “cur rent—driven case . ”

_ . -
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B. Perturbation Solutions

a) Analytic solutions valid for small nonlinearities (i.e., small

values of K , corresponding to junction lengths L which are small compared

to A) were obtained by perturbation methods -In bot h the voltage and the

current  driven cases. They exh ib i t  the  typical “r esonance ” behavior of the

I—V—charac teristics observed experimentall y and predicted numericall y [14].

b) A constructive perturbation procedure , similar to those used in

bi furca t ion  theory and v a l i d  in the l i m i t  of s t rong  dissip a t i o n  (a -*

was developed for the voltage driven case.

C. Existence, Uniqueness, and Stability Results

If one writes 4m = 410 + m$i , where

= tot — kx + px~

satisfies the formal limit equation ~~~ = 0 as K -* 0, and where k GUI + II ,

p = ow/ 2 , and ip is periodic in t , then in the vol tage driven cas e i~ satis-

f ies

A4~ = K sin (410 
+ ji ) ,

(19)

* 1 =~~ I - 0 .x 0  ~x x=r

The following resul ts were proved in this case:

a) For any o~ 0 there exist (2r/w )—per iodic solutions of the probl em

(19). Hence , for o~ 0, there exist (possibl y mult ip l y branched (13])

I—V—charac teristics for the Josephson junction.

b) For moderate amounts of dissipation relative to the strength ol

the nonlinearity (i.e., modera tely large valu es of a relative to I ) ,  the

_ _ _ _ __ _ _ _  _ _  _ _  _ _
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periodic solution o f (19) is un ique and globally asymptotically stable.

Hence solutions with arbitrary initial da ta tend — exponentiall y in t —

to 41 = + 4’ with 4’ periodic. For example , if K = (corresponding to

L/ A f ~. 9) then a � 9/16 is s u f f i c i e n t  for  uni queness;  s imi la r ly ,  w i t h

K = l/4im
2 

(correspond ing to L/A~ = ~) uniqueness is ass ured for a � .06.

These results validate the perturbation procedure discussed under IV.B.a

in the limit K 4 0.

- - -
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